Aperiodicity of Rational Functions Is PSPACE-Complete

نویسندگان

  • Emmanuel Filiot
  • Olivier Gauwin
  • Nathan Lhote
چکیده

It is known that a language of finite words is definable in monadic second-order logic – MSO – (resp. first-order logic – FO –) iff it is recognized by some finite automaton (resp. some aperiodic finite automaton). Deciding whether an automaton A is equivalent to an aperiodic one is known to be PSPACE-complete. This problem has an important application in logic: it allows one to decide whether a given MSO formula is equivalent to some FO formula. In this paper, we address the aperiodicity problem for functions from finite words to finite words (transductions), defined by finite transducers, or equivalently by bimachines, a transducer model studied by Schützenberger and Reutenauer. Precisely, we show that the problem of deciding whether a given bimachine is equivalent to some aperiodic one is PSPACE-complete. 1998 ACM Subject Classification F.4.3 Mathematical Logic and Formal Languages

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J an 2 00 7 Two - letter group codes that preserve aperiodicity of inverse finite automata

We construct group codes over two letters (i.e., bases of subgroups of a two-generated free group) with special properties. Such group codes can be used for reducing algorithmic problems over large alphabets to algorithmic problems over a two-letter alphabet. Our group codes preserve aperiodicity of inverse finite automata. As an application we show that the following problems are PSpace-comple...

متن کامل

Two-letter group codes that preserve aperiodicity of inverse finite automata

We construct group codes over two letters (i.e., bases of subgroups of a two-generated free group) with special properties. Such group codes can be used for reducing algorithmic problems over large alphabets to algorithmic problems over a two-letter alphabet. Our group codes preserve aperiodicity of inverse finite automata. As an application we show that the following problems are PSPACE-comple...

متن کامل

Rational verification in Iterated Electric Boolean Games

Electric boolean games are compact representations of games where the players have qualitative objectives described by LTL formulae and have limited resources. We study the complexity of several decision problems related to the analysis of rationality in electric boolean games with LTL objectives. In particular, we report that the problem of deciding whether a profile is a Nash equilibrium in a...

متن کامل

A Note on The Existential Theory of Equations in Plain Groups

Based on a PSPACE-completeness result for free monoids with involution [4] it is shown that the existential theory of equations with rational constraints in plain groups is PSPACE-complete. As a corollary this settles a question from [14].

متن کامل

Logical and Algebraic Characterizations of Rational Transductions

Rational word languages can be defined by several equivalent means: finite state automata, rational expressions, finite congruences, or monadic second-order (MSO) logic. The robust subclass of aperiodic languages is defined by: counter-free automata, star-free expressions, aperiodic (finite) congruences, or first-order (FO) logic. In particular, their algebraic characterization by aperiodic con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016